The mitochondrial TMEM177 associates with COX20 during COX2 biogenesis

نویسندگان

  • Isotta Lorenzi
  • Silke Oeljeklaus
  • Abhishek Aich
  • Christin Ronsör
  • Sylvie Callegari
  • Jan Dudek
  • Bettina Warscheid
  • Sven Dennerlein
  • Peter Rehling
چکیده

The three mitochondrial-encoded proteins, COX1, COX2, and COX3, form the core of the cytochrome c oxidase. Upon synthesis, COX2 engages with COX20 in the inner mitochondrial membrane, a scaffold protein that recruits metallochaperones for copper delivery to the CuA-Site of COX2. Here we identified the human protein, TMEM177 as a constituent of the COX20 interaction network. Loss or increase in the amount of TMEM177 affects COX20 abundance leading to reduced or increased COX20 levels respectively. TMEM177 associates with newly synthesized COX2 and SCO2 in a COX20-dependent manner. Our data shows that by unbalancing the amount of TMEM177, newly synthesized COX2 accumulates in a COX20-associated state. We conclude that TMEM177 promotes assembly of COX2 at the level of CuA-site formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribosome-Associated Mba1 Escorts Cox2 from Insertion Machinery to Maturing Assembly Intermediates

The three conserved core subunits of the cytochrome c oxidase are mitochondrial-encoded in close to all eukaryotes. The Cox2 subunit spans the inner membrane twice, exposing N- and C-terminus into the intermembrane space. For this the N-terminus is exported cotranslationally by Oxa1 and subsequently undergoes proteolytic maturation in Saccharomyces cerevisiae Little is known about the transloca...

متن کامل

Human COX20 cooperates with SCO1 and SCO2 to mature COX2 and promote the assembly of cytochrome c oxidase.

Cytochrome c oxidase (CIV) deficiency is one of the most common respiratory chain defects in patients presenting with mitochondrial encephalocardiomyopathies. CIV biogenesis is complicated by the dual genetic origin of its structural subunits, and assembly of a functional holoenzyme complex requires a large number of nucleus-encoded assembly factors. In general, the functions of these assembly ...

متن کامل

Multiple Roles of the Cox20 Chaperone in Assembly of S. cerevisiae cytochrome c oxidase

The Cox2 subunit of Saccharomyces cerevisiae cytochrome c oxidase is synthesized in the mitochondrial matrix as a precursor whose leader peptide is rapidly processed by the inner membrane protease following translocation to the intermembrane space. Processing is chaperoned by Cox20, an integral inner membrane protein whose hydrophilic domains are located in the intermembrane space, and Cox20 re...

متن کامل

Multiple roles of the Cox20 chaperone in assembly of Saccharomyces cerevisiae cytochrome c oxidase.

The Cox2 subunit of Saccharomyces cerevisiae cytochrome c oxidase is synthesized in the mitochondrial matrix as a precursor whose leader peptide is rapidly processed by the inner membrane protease following translocation to the intermembrane space. Processing is chaperoned by Cox20, an integral inner membrane protein whose hydrophilic domains are located in the intermembrane space, and Cox20 re...

متن کامل

A mutation in the FAM36A gene, the human ortholog of COX20, impairs cytochrome c oxidase assembly and is associated with ataxia and muscle hypotonia.

The mitochondrial respiratory chain complex IV (cytochrome c oxidase) is a multi-subunit enzyme that transfers electrons from cytochrome c to molecular oxygen, yielding water. Its biogenesis requires concerted expression of mitochondria- and nuclear-encoded subunits and assembly factors. In this report, we describe a homozygous missense mutation in FAM36A from a patient who displays ataxia and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1865  شماره 

صفحات  -

تاریخ انتشار 2018